MakeItFrom.com
Menu (ESC)

C82200 Copper vs. EN 1.1127 Steel

C82200 copper belongs to the copper alloys classification, while EN 1.1127 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is EN 1.1127 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
14 to 25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 390 to 660
660 to 790
Tensile Strength: Yield (Proof), MPa 210 to 520
410 to 580

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
49
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 55
2.1
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.5
Embodied Energy, MJ/kg 74
19
Embodied Water, L/kg 310
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
90 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
440 to 880
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
23 to 28
Strength to Weight: Bending, points 13 to 19
22 to 24
Thermal Diffusivity, mm2/s 53
13
Thermal Shock Resistance, points 14 to 23
21 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.34 to 0.42
Chromium (Cr), % 0
0 to 0.4
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
96.6 to 98.1
Manganese (Mn), % 0
1.4 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 1.0 to 2.0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.035
Residuals, % 0 to 0.5
0