MakeItFrom.com
Menu (ESC)

C82200 Copper vs. EN 1.4749 Stainless Steel

C82200 copper belongs to the copper alloys classification, while EN 1.4749 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is EN 1.4749 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
16
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 390 to 660
600
Tensile Strength: Yield (Proof), MPa 210 to 520
320

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 180
17
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 55
13
Density, g/cm3 8.9
7.6
Embodied Carbon, kg CO2/kg material 4.8
2.5
Embodied Energy, MJ/kg 74
36
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
80
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
250
Stiffness to Weight: Axial, points 7.4
15
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 12 to 20
22
Strength to Weight: Bending, points 13 to 19
21
Thermal Diffusivity, mm2/s 53
4.6
Thermal Shock Resistance, points 14 to 23
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
26 to 29
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
68.5 to 73.7
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.0 to 2.0
0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0