MakeItFrom.com
Menu (ESC)

C82200 Copper vs. CC482K Bronze

Both C82200 copper and CC482K bronze are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is CC482K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 20
5.6
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 390 to 660
300
Tensile Strength: Yield (Proof), MPa 210 to 520
160

Thermal Properties

Latent Heat of Fusion, J/g 220
190
Maximum Temperature: Mechanical, °C 230
160
Melting Completion (Liquidus), °C 1080
980
Melting Onset (Solidus), °C 1040
860
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 180
64
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
10
Electrical Conductivity: Equal Weight (Specific), % IACS 46
10

Otherwise Unclassified Properties

Base Metal Price, % relative 55
36
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 4.8
3.8
Embodied Energy, MJ/kg 74
62
Embodied Water, L/kg 310
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
14
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
120
Stiffness to Weight: Axial, points 7.4
6.8
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12 to 20
9.5
Strength to Weight: Bending, points 13 to 19
11
Thermal Diffusivity, mm2/s 53
20
Thermal Shock Resistance, points 14 to 23
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Beryllium (Be), % 0.35 to 0.8
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
83.5 to 87
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0.7 to 2.5
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 1.0 to 2.0
0 to 2.0
Phosphorus (P), % 0
0 to 0.4
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
10.5 to 12.5
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0 to 0.5
0