MakeItFrom.com
Menu (ESC)

C82200 Copper vs. Grade CY40 Nickel

C82200 copper belongs to the copper alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
74
Tensile Strength: Ultimate (UTS), MPa 390 to 660
540
Tensile Strength: Yield (Proof), MPa 210 to 520
220

Thermal Properties

Latent Heat of Fusion, J/g 220
330
Maximum Temperature: Mechanical, °C 230
960
Melting Completion (Liquidus), °C 1080
1350
Melting Onset (Solidus), °C 1040
1300
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
14
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 46
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 55
55
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 4.8
9.1
Embodied Energy, MJ/kg 74
130
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
150
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
130
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 20
18
Strength to Weight: Bending, points 13 to 19
18
Thermal Diffusivity, mm2/s 53
3.7
Thermal Shock Resistance, points 14 to 23
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
0 to 11
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 1.0 to 2.0
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0