MakeItFrom.com
Menu (ESC)

C82200 Copper vs. SAE-AISI 5130 Steel

C82200 copper belongs to the copper alloys classification, while SAE-AISI 5130 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is SAE-AISI 5130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 20
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 390 to 660
500 to 640
Tensile Strength: Yield (Proof), MPa 210 to 520
330 to 530

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 230
420
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
45
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 46
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 55
2.2
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
1.4
Embodied Energy, MJ/kg 74
19
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
74 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
290 to 750
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
18 to 23
Strength to Weight: Bending, points 13 to 19
18 to 21
Thermal Diffusivity, mm2/s 53
12
Thermal Shock Resistance, points 14 to 23
16 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.28 to 0.33
Chromium (Cr), % 0
0.8 to 1.1
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
97.2 to 98.1
Manganese (Mn), % 0
0.7 to 0.9
Nickel (Ni), % 1.0 to 2.0
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0