MakeItFrom.com
Menu (ESC)

C82200 Copper vs. C62300 Bronze

Both C82200 copper and C62300 bronze are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 8.0 to 20
18 to 32
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
43
Tensile Strength: Ultimate (UTS), MPa 390 to 660
570 to 630
Tensile Strength: Yield (Proof), MPa 210 to 520
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 220
230
Maximum Temperature: Mechanical, °C 230
220
Melting Completion (Liquidus), °C 1080
1050
Melting Onset (Solidus), °C 1040
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 180
54
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
12
Electrical Conductivity: Equal Weight (Specific), % IACS 46
13

Otherwise Unclassified Properties

Base Metal Price, % relative 55
28
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 4.8
3.1
Embodied Energy, MJ/kg 74
52
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
240 to 430
Stiffness to Weight: Axial, points 7.4
7.6
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 12 to 20
19 to 21
Strength to Weight: Bending, points 13 to 19
18 to 20
Thermal Diffusivity, mm2/s 53
15
Thermal Shock Resistance, points 14 to 23
20 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
8.5 to 10
Beryllium (Be), % 0.35 to 0.8
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
83.2 to 89.5
Iron (Fe), % 0
2.0 to 4.0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 1.0 to 2.0
0 to 1.0
Silicon (Si), % 0
0 to 0.25
Tin (Sn), % 0
0 to 0.6
Residuals, % 0 to 0.5
0 to 0.5