MakeItFrom.com
Menu (ESC)

C82200 Copper vs. N06255 Nickel

C82200 copper belongs to the copper alloys classification, while N06255 nickel belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0 to 20
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
81
Tensile Strength: Ultimate (UTS), MPa 390 to 660
660
Tensile Strength: Yield (Proof), MPa 210 to 520
250

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 230
1000
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
450
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 55
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 4.8
9.4
Embodied Energy, MJ/kg 74
130
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
230
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
150
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 20
22
Strength to Weight: Bending, points 13 to 19
20
Thermal Shock Resistance, points 14 to 23
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0 to 1.2
Iron (Fe), % 0
6.0 to 24
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 1.0 to 2.0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Residuals, % 0 to 0.5
0