MakeItFrom.com
Menu (ESC)

C82200 Copper vs. S31266 Stainless Steel

C82200 copper belongs to the copper alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 8.0 to 20
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
81
Tensile Strength: Ultimate (UTS), MPa 390 to 660
860
Tensile Strength: Yield (Proof), MPa 210 to 520
470

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 180
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 55
37
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 4.8
6.5
Embodied Energy, MJ/kg 74
89
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
290
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
540
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
29
Strength to Weight: Bending, points 13 to 19
24
Thermal Diffusivity, mm2/s 53
3.1
Thermal Shock Resistance, points 14 to 23
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
1.0 to 2.5
Iron (Fe), % 0
34.1 to 46
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 1.0 to 2.0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5
Residuals, % 0 to 0.5
0