MakeItFrom.com
Menu (ESC)

C82200 Copper vs. S31655 Stainless Steel

C82200 copper belongs to the copper alloys classification, while S31655 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is S31655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
39
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 60 to 96
88
Shear Modulus, GPa 44
78
Tensile Strength: Ultimate (UTS), MPa 390 to 660
710
Tensile Strength: Yield (Proof), MPa 210 to 520
350

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 230
1010
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 180
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 46
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 55
17
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
3.3
Embodied Energy, MJ/kg 74
46
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
230
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
310
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
25
Strength to Weight: Bending, points 13 to 19
23
Thermal Diffusivity, mm2/s 53
4.0
Thermal Shock Resistance, points 14 to 23
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19.5 to 21.5
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0 to 1.0
Iron (Fe), % 0
63.2 to 71.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.5 to 1.5
Nickel (Ni), % 1.0 to 2.0
8.0 to 9.5
Nitrogen (N), % 0
0.14 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0