MakeItFrom.com
Menu (ESC)

C82200 Copper vs. S64512 Stainless Steel

C82200 copper belongs to the copper alloys classification, while S64512 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82200 copper and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 20
17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 390 to 660
1140
Tensile Strength: Yield (Proof), MPa 210 to 520
890

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 230
750
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 180
28
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 46
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
3.3
Embodied Energy, MJ/kg 74
47
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49 to 66
180
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1130
2020
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
40
Strength to Weight: Bending, points 13 to 19
31
Thermal Diffusivity, mm2/s 53
7.5
Thermal Shock Resistance, points 14 to 23
42

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Beryllium (Be), % 0.35 to 0.8
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 97.4 to 98.7
0
Iron (Fe), % 0
80.6 to 84.7
Manganese (Mn), % 0
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 1.0 to 2.0
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0.25 to 0.4
Residuals, % 0 to 0.5
0