MakeItFrom.com
Menu (ESC)

C82400 Copper vs. ASTM A369 Grade FP9

C82400 copper belongs to the copper alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
20
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
75
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
470
Tensile Strength: Yield (Proof), MPa 260 to 970
240

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 270
600
Melting Completion (Liquidus), °C 1000
1450
Melting Onset (Solidus), °C 900
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
10

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
2.0
Embodied Energy, MJ/kg 140
28
Embodied Water, L/kg 310
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
80
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
140
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 33
17
Strength to Weight: Bending, points 16 to 26
17
Thermal Diffusivity, mm2/s 39
6.9
Thermal Shock Resistance, points 17 to 36
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
8.0 to 10
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
87.1 to 90.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0