MakeItFrom.com
Menu (ESC)

C82400 Copper vs. AWS E308H

C82400 copper belongs to the copper alloys classification, while AWS E308H belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is AWS E308H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
40
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
620

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 26
2.5

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
3.2
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 310
150

Common Calculations

Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 33
22
Strength to Weight: Bending, points 16 to 26
21
Thermal Diffusivity, mm2/s 39
4.2
Thermal Shock Resistance, points 17 to 36
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0 to 0.1
18 to 21
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0 to 0.75
Iron (Fe), % 0 to 0.2
62.9 to 72.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.2
9.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0