MakeItFrom.com
Menu (ESC)

C82400 Copper vs. AWS E385

C82400 copper belongs to the copper alloys classification, while AWS E385 belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is AWS E385.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
79
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
580

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Melting Completion (Liquidus), °C 1000
1440
Melting Onset (Solidus), °C 900
1390
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 26
1.9

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 8.9
5.8
Embodied Energy, MJ/kg 140
79
Embodied Water, L/kg 310
200

Common Calculations

Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 33
20
Strength to Weight: Bending, points 16 to 26
19
Thermal Diffusivity, mm2/s 39
3.6
Thermal Shock Resistance, points 17 to 36
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19.5 to 21.5
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
1.2 to 2.0
Iron (Fe), % 0 to 0.2
41.8 to 50.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
1.0 to 2.5
Molybdenum (Mo), % 0
4.2 to 5.2
Nickel (Ni), % 0 to 0.2
24 to 26
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0