MakeItFrom.com
Menu (ESC)

C82400 Copper vs. EN 1.4378 Stainless Steel

C82400 copper belongs to the copper alloys classification, while EN 1.4378 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is EN 1.4378 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
14 to 34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
760 to 1130
Tensile Strength: Yield (Proof), MPa 260 to 970
430 to 970

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 270
910
Melting Completion (Liquidus), °C 1000
1390
Melting Onset (Solidus), °C 900
1350
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.6
Embodied Carbon, kg CO2/kg material 8.9
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
470 to 2370
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 33
28 to 41
Strength to Weight: Bending, points 16 to 26
24 to 31
Thermal Shock Resistance, points 17 to 36
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
17 to 19
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
61.2 to 69
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
11.5 to 14.5
Nickel (Ni), % 0 to 0.2
2.3 to 3.7
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0