MakeItFrom.com
Menu (ESC)

C82400 Copper vs. EN 1.7725 Steel

C82400 copper belongs to the copper alloys classification, while EN 1.7725 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
14
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
830 to 1000
Tensile Strength: Yield (Proof), MPa 260 to 970
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 270
440
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 900
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.6

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 8.9
1.8
Embodied Energy, MJ/kg 140
24
Embodied Water, L/kg 310
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
980 to 1940
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 33
29 to 35
Strength to Weight: Bending, points 16 to 26
25 to 28
Thermal Diffusivity, mm2/s 39
11
Thermal Shock Resistance, points 17 to 36
24 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0 to 0.1
1.3 to 1.7
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0
Iron (Fe), % 0 to 0.2
95.7 to 97.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0

Comparable Variants