MakeItFrom.com
Menu (ESC)

C82400 Copper vs. CC140C Copper

Both C82400 copper and CC140C copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.0 to 20
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
44
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
340
Tensile Strength: Yield (Proof), MPa 260 to 970
230

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 270
200
Melting Completion (Liquidus), °C 1000
1100
Melting Onset (Solidus), °C 900
1040
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 130
310
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
77
Electrical Conductivity: Equal Weight (Specific), % IACS 26
78

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 8.9
2.6
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
34
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
220
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 33
10
Strength to Weight: Bending, points 16 to 26
12
Thermal Diffusivity, mm2/s 39
89
Thermal Shock Resistance, points 17 to 36
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Chromium (Cr), % 0 to 0.1
0.4 to 1.2
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
98.8 to 99.6
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 0 to 0.2
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0