MakeItFrom.com
Menu (ESC)

C82400 Copper vs. Nickel 890

C82400 copper belongs to the copper alloys classification, while nickel 890 belongs to the nickel alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
39
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
78
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
590
Tensile Strength: Yield (Proof), MPa 260 to 970
230

Thermal Properties

Latent Heat of Fusion, J/g 230
330
Maximum Temperature: Mechanical, °C 270
1000
Melting Completion (Liquidus), °C 1000
1390
Melting Onset (Solidus), °C 900
1340
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 8.9
8.2
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
180
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
140
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 33
20
Strength to Weight: Bending, points 16 to 26
19
Thermal Shock Resistance, points 17 to 36
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0.050 to 0.6
Beryllium (Be), % 1.6 to 1.9
0
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0 to 0.1
23.5 to 28.5
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
0 to 0.75
Iron (Fe), % 0 to 0.2
17.3 to 33.9
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.2
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0.15 to 0.6
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0