MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C53800 Bronze

Both C82400 copper and C53800 bronze are copper alloys. They have 86% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
2.3
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
830
Tensile Strength: Yield (Proof), MPa 260 to 970
660

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 270
160
Melting Completion (Liquidus), °C 1000
980
Melting Onset (Solidus), °C 900
800
Specific Heat Capacity, J/kg-K 380
360
Thermal Conductivity, W/m-K 130
61
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
9.3

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.7
Embodied Carbon, kg CO2/kg material 8.9
3.9
Embodied Energy, MJ/kg 140
64
Embodied Water, L/kg 310
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
18
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
2020
Stiffness to Weight: Axial, points 7.6
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 33
26
Strength to Weight: Bending, points 16 to 26
22
Thermal Diffusivity, mm2/s 39
19
Thermal Shock Resistance, points 17 to 36
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.6 to 1.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
85.1 to 86.5
Iron (Fe), % 0 to 0.2
0 to 0.030
Lead (Pb), % 0 to 0.020
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.060
Nickel (Ni), % 0 to 0.2
0 to 0.030
Tin (Sn), % 0 to 0.1
13.1 to 13.9
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 0.12
Residuals, % 0 to 0.5
0 to 0.2