MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C84100 Brass

Both C82400 copper and C84100 brass are copper alloys. They have 82% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
13
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 45
39
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
230
Tensile Strength: Yield (Proof), MPa 260 to 970
81

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 270
160
Melting Completion (Liquidus), °C 1000
1000
Melting Onset (Solidus), °C 900
810
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
23
Electrical Conductivity: Equal Weight (Specific), % IACS 26
25

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.5
Embodied Carbon, kg CO2/kg material 8.9
2.9
Embodied Energy, MJ/kg 140
48
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
24
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
30
Stiffness to Weight: Axial, points 7.6
7.1
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 16 to 33
7.4
Strength to Weight: Bending, points 16 to 26
9.7
Thermal Diffusivity, mm2/s 39
33
Thermal Shock Resistance, points 17 to 36
7.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Beryllium (Be), % 1.6 to 1.9
0
Bismuth (Bi), % 0
0 to 0.090
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
78 to 85
Iron (Fe), % 0 to 0.2
0 to 0.3
Lead (Pb), % 0 to 0.020
0.050 to 0.25
Nickel (Ni), % 0 to 0.2
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
1.5 to 4.5
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
12 to 20
Residuals, % 0 to 0.5
0 to 0.5