MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C91000 Bronze

Both C82400 copper and C91000 bronze are copper alloys. They have 86% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
7.0
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
39
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
230
Tensile Strength: Yield (Proof), MPa 260 to 970
150

Thermal Properties

Latent Heat of Fusion, J/g 230
180
Maximum Temperature: Mechanical, °C 270
160
Melting Completion (Liquidus), °C 1000
960
Melting Onset (Solidus), °C 900
820
Specific Heat Capacity, J/kg-K 380
360
Thermal Conductivity, W/m-K 130
64
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
9.4

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.6
Embodied Carbon, kg CO2/kg material 8.9
4.1
Embodied Energy, MJ/kg 140
67
Embodied Water, L/kg 310
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
14
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
100
Stiffness to Weight: Axial, points 7.6
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 33
7.5
Strength to Weight: Bending, points 16 to 26
9.7
Thermal Diffusivity, mm2/s 39
20
Thermal Shock Resistance, points 17 to 36
8.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Beryllium (Be), % 1.6 to 1.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
84 to 86
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0 to 0.020
0 to 0.2
Nickel (Ni), % 0 to 0.2
0 to 0.8
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.1
14 to 16
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 1.5
Residuals, % 0 to 0.5
0 to 0.6