MakeItFrom.com
Menu (ESC)

C82400 Copper vs. C95600 Bronze

Both C82400 copper and C95600 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C82400 copper and the bottom bar is C95600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
42
Tensile Strength: Ultimate (UTS), MPa 500 to 1030
500
Tensile Strength: Yield (Proof), MPa 260 to 970
230

Thermal Properties

Latent Heat of Fusion, J/g 230
260
Maximum Temperature: Mechanical, °C 270
210
Melting Completion (Liquidus), °C 1000
1000
Melting Onset (Solidus), °C 900
980
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.7

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 8.9
3.0
Embodied Energy, MJ/kg 140
50
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 83
60
Resilience: Unit (Modulus of Resilience), kJ/m3 270 to 3870
230
Stiffness to Weight: Axial, points 7.6
7.5
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 16 to 33
17
Strength to Weight: Bending, points 16 to 26
17
Thermal Diffusivity, mm2/s 39
11
Thermal Shock Resistance, points 17 to 36
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
6.0 to 8.0
Beryllium (Be), % 1.6 to 1.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.2 to 0.65
0
Copper (Cu), % 96 to 98.2
88 to 92.2
Iron (Fe), % 0 to 0.2
0
Lead (Pb), % 0 to 0.020
0
Nickel (Ni), % 0 to 0.2
0 to 0.25
Silicon (Si), % 0
1.8 to 3.2
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0 to 1.0