MakeItFrom.com
Menu (ESC)

C82500 Copper vs. AWS E70C-B2L

C82500 copper belongs to the copper alloys classification, while AWS E70C-B2L belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is AWS E70C-B2L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 45
73
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
580
Tensile Strength: Yield (Proof), MPa 310 to 980
460

Thermal Properties

Latent Heat of Fusion, J/g 240
260
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 21
8.6

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 10
1.6
Embodied Energy, MJ/kg 160
22
Embodied Water, L/kg 310
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
110
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
550
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 35
20
Strength to Weight: Bending, points 17 to 27
20
Thermal Diffusivity, mm2/s 38
11
Thermal Shock Resistance, points 19 to 38
17

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
1.0 to 1.5
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
0 to 0.35
Iron (Fe), % 0 to 0.25
95.1 to 98
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.65
Nickel (Ni), % 0 to 0.2
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.35
0.25 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5