MakeItFrom.com
Menu (ESC)

C82500 Copper vs. EN 1.4655 Stainless Steel

C82500 copper belongs to the copper alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
23 to 25
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 45
78
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
720 to 730
Tensile Strength: Yield (Proof), MPa 310 to 980
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 280
1050
Melting Completion (Liquidus), °C 980
1420
Melting Onset (Solidus), °C 860
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 21
2.5

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 10
2.9
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
510 to 580
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 35
26
Strength to Weight: Bending, points 17 to 27
23
Thermal Diffusivity, mm2/s 38
4.0
Thermal Shock Resistance, points 19 to 38
20

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
22 to 24
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
1.0 to 3.0
Iron (Fe), % 0 to 0.25
63.6 to 73.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 0.2
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0