MakeItFrom.com
Menu (ESC)

C82500 Copper vs. EN 1.4658 Stainless Steel

C82500 copper belongs to the copper alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 1.0 to 20
28
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 45
81
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
900
Tensile Strength: Yield (Proof), MPa 310 to 980
730

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 280
1100
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 10
4.5
Embodied Energy, MJ/kg 160
61
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
240
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
1280
Stiffness to Weight: Axial, points 7.7
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 35
32
Strength to Weight: Bending, points 17 to 27
26
Thermal Diffusivity, mm2/s 38
4.3
Thermal Shock Resistance, points 19 to 38
24

Alloy Composition

Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
26 to 29
Cobalt (Co), % 0.15 to 0.7
0.5 to 2.0
Copper (Cu), % 95.3 to 97.8
0 to 1.0
Iron (Fe), % 0 to 0.25
50.9 to 63.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.2
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.2 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0