MakeItFrom.com
Menu (ESC)

C82500 Copper vs. Type 2 Niobium

C82500 copper belongs to the copper alloys classification, while Type 2 niobium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is Type 2 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
29
Poisson's Ratio 0.33
0.4
Shear Modulus, GPa 45
38
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
140
Tensile Strength: Yield (Proof), MPa 310 to 980
82

Thermal Properties

Latent Heat of Fusion, J/g 240
320
Specific Heat Capacity, J/kg-K 390
270
Thermal Conductivity, W/m-K 130
52
Thermal Expansion, µm/m-K 17
7.3

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.6
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
35
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
32
Stiffness to Weight: Axial, points 7.7
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18 to 35
4.6
Strength to Weight: Bending, points 17 to 27
7.1
Thermal Diffusivity, mm2/s 38
23
Thermal Shock Resistance, points 19 to 38
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 0.25
0 to 0.010
Lead (Pb), % 0 to 0.020
0
Molybdenum (Mo), % 0
0 to 0.020
Nickel (Ni), % 0 to 0.2
0 to 0.0050
Niobium (Nb), % 0
99.5 to 100
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.35
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.3
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0 to 0.030
Tungsten (W), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0
0 to 0.020
Residuals, % 0 to 0.5
0