MakeItFrom.com
Menu (ESC)

C82500 Copper vs. C33000 Brass

Both C82500 copper and C33000 brass are copper alloys. They have 67% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is C33000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
7.0 to 60
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 45
40
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
320 to 520
Tensile Strength: Yield (Proof), MPa 310 to 980
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 240
180
Maximum Temperature: Mechanical, °C 280
130
Melting Completion (Liquidus), °C 980
940
Melting Onset (Solidus), °C 860
900
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
26
Electrical Conductivity: Equal Weight (Specific), % IACS 21
29

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.2
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 160
45
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
60 to 950
Stiffness to Weight: Axial, points 7.7
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 18 to 35
11 to 18
Strength to Weight: Bending, points 17 to 27
13 to 18
Thermal Diffusivity, mm2/s 38
37
Thermal Shock Resistance, points 19 to 38
11 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
65 to 68
Iron (Fe), % 0 to 0.25
0 to 0.070
Lead (Pb), % 0 to 0.020
0.25 to 0.7
Nickel (Ni), % 0 to 0.2
0
Silicon (Si), % 0.2 to 0.35
0
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
30.8 to 34.8
Residuals, % 0 to 0.5
0 to 0.4