MakeItFrom.com
Menu (ESC)

C82500 Copper vs. C52100 Bronze

Both C82500 copper and C52100 bronze are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 45
41
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
380 to 800

Thermal Properties

Latent Heat of Fusion, J/g 240
200
Maximum Temperature: Mechanical, °C 280
180
Melting Completion (Liquidus), °C 980
1030
Melting Onset (Solidus), °C 860
880
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 130
62
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
13
Electrical Conductivity: Equal Weight (Specific), % IACS 21
13

Otherwise Unclassified Properties

Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 10
3.4
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 310
370

Common Calculations

Stiffness to Weight: Axial, points 7.7
7.0
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18 to 35
12 to 25
Strength to Weight: Bending, points 17 to 27
13 to 22
Thermal Diffusivity, mm2/s 38
19
Thermal Shock Resistance, points 19 to 38
14 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 1.9 to 2.3
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
89.8 to 93
Iron (Fe), % 0 to 0.25
0 to 0.1
Lead (Pb), % 0 to 0.020
0 to 0.050
Nickel (Ni), % 0 to 0.2
0
Phosphorus (P), % 0
0.030 to 0.35
Silicon (Si), % 0.2 to 0.35
0
Tin (Sn), % 0 to 0.1
7.0 to 9.0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.5