MakeItFrom.com
Menu (ESC)

C82500 Copper vs. S43932 Stainless Steel

C82500 copper belongs to the copper alloys classification, while S43932 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82500 copper and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
25
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 45
77
Tensile Strength: Ultimate (UTS), MPa 550 to 1100
460
Tensile Strength: Yield (Proof), MPa 310 to 980
230

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 280
890
Melting Completion (Liquidus), °C 980
1440
Melting Onset (Solidus), °C 860
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 130
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 21
3.2

Otherwise Unclassified Properties

Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 160
40
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 94
96
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 4000
140
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 35
17
Strength to Weight: Bending, points 17 to 27
17
Thermal Diffusivity, mm2/s 38
6.3
Thermal Shock Resistance, points 19 to 38
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0 to 0.15
Beryllium (Be), % 1.9 to 2.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
17 to 19
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 95.3 to 97.8
0
Iron (Fe), % 0 to 0.25
76.7 to 83
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0.2 to 0.75
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0