MakeItFrom.com
Menu (ESC)

C82600 Copper vs. EN 1.4877 Stainless Steel

C82600 copper belongs to the copper alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
36
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
79
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
630
Tensile Strength: Yield (Proof), MPa 320 to 1070
200

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 300
1150
Melting Completion (Liquidus), °C 950
1400
Melting Onset (Solidus), °C 860
1360
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 11
6.2
Embodied Energy, MJ/kg 180
89
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
180
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
100
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 36
22
Strength to Weight: Bending, points 17 to 28
20
Thermal Diffusivity, mm2/s 37
3.2
Thermal Shock Resistance, points 19 to 39
15

Alloy Composition

Aluminum (Al), % 0 to 0.15
0 to 0.025
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.1
26 to 28
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
0
Iron (Fe), % 0 to 0.25
36.4 to 42.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.2 to 0.35
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0