MakeItFrom.com
Menu (ESC)

C82600 Copper vs. S15500 Stainless Steel

C82600 copper belongs to the copper alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C82600 copper and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
6.8 to 16
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
75
Tensile Strength: Ultimate (UTS), MPa 570 to 1140
890 to 1490
Tensile Strength: Yield (Proof), MPa 320 to 1070
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 300
820
Melting Completion (Liquidus), °C 950
1430
Melting Onset (Solidus), °C 860
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 20
2.5

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 11
2.7
Embodied Energy, MJ/kg 180
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 97
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 430 to 4690
890 to 4460
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 18 to 36
32 to 53
Strength to Weight: Bending, points 17 to 28
26 to 37
Thermal Diffusivity, mm2/s 37
4.6
Thermal Shock Resistance, points 19 to 39
30 to 50

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.3 to 2.6
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
14 to 15.5
Cobalt (Co), % 0.35 to 0.65
0
Copper (Cu), % 94.9 to 97.2
2.5 to 4.5
Iron (Fe), % 0 to 0.25
71.9 to 79.9
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0