MakeItFrom.com
Menu (ESC)

C82700 Copper vs. C64210 Bronze

Both C82700 copper and C64210 bronze are copper alloys. They have a moderately high 91% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is C64210 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.8
35
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
42
Tensile Strength: Ultimate (UTS), MPa 1200
570
Tensile Strength: Yield (Proof), MPa 1020
290

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 300
210
Melting Completion (Liquidus), °C 950
1040
Melting Onset (Solidus), °C 860
990
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 130
48
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
13
Electrical Conductivity: Equal Weight (Specific), % IACS 21
14

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.4
Embodied Carbon, kg CO2/kg material 12
3.0
Embodied Energy, MJ/kg 180
49
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
170
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
360
Stiffness to Weight: Axial, points 7.8
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 38
19
Strength to Weight: Bending, points 29
18
Thermal Diffusivity, mm2/s 39
13
Thermal Shock Resistance, points 41
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
6.3 to 7.0
Arsenic (As), % 0
0 to 0.15
Beryllium (Be), % 2.4 to 2.6
0
Chromium (Cr), % 0 to 0.090
0
Copper (Cu), % 94.6 to 96.7
89 to 92.2
Iron (Fe), % 0 to 0.25
0 to 0.3
Lead (Pb), % 0 to 0.020
0 to 0.050
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 1.0 to 1.5
0 to 0.25
Silicon (Si), % 0 to 0.15
1.5 to 2.0
Tin (Sn), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.5
Residuals, % 0 to 0.5
0 to 0.5