MakeItFrom.com
Menu (ESC)

C82700 Copper vs. C95410 Bronze

Both C82700 copper and C95410 bronze are copper alloys. They have 86% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82700 copper and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.8
9.1 to 13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
43
Tensile Strength: Ultimate (UTS), MPa 1200
620 to 740
Tensile Strength: Yield (Proof), MPa 1020
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 240
230
Maximum Temperature: Mechanical, °C 300
230
Melting Completion (Liquidus), °C 950
1040
Melting Onset (Solidus), °C 860
1030
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 130
59
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
13
Electrical Conductivity: Equal Weight (Specific), % IACS 21
14

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.2
Embodied Carbon, kg CO2/kg material 12
3.3
Embodied Energy, MJ/kg 180
54
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 4260
280 to 630
Stiffness to Weight: Axial, points 7.8
7.8
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 38
21 to 25
Strength to Weight: Bending, points 29
20 to 22
Thermal Diffusivity, mm2/s 39
16
Thermal Shock Resistance, points 41
22 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
10 to 11.5
Beryllium (Be), % 2.4 to 2.6
0
Chromium (Cr), % 0 to 0.090
0
Copper (Cu), % 94.6 to 96.7
83 to 85.5
Iron (Fe), % 0 to 0.25
3.0 to 5.0
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 1.0 to 1.5
1.5 to 2.5
Silicon (Si), % 0 to 0.15
0
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0 to 0.5