MakeItFrom.com
Menu (ESC)

C82800 Copper vs. AISI 405 Stainless Steel

C82800 copper belongs to the copper alloys classification, while AISI 405 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
22
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 45 to 85
76
Shear Modulus, GPa 46
76
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
470
Tensile Strength: Yield (Proof), MPa 380 to 1000
200

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 310
820
Melting Completion (Liquidus), °C 930
1530
Melting Onset (Solidus), °C 890
1480
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 19
3.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 12
2.0
Embodied Energy, MJ/kg 190
28
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
84
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
100
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
17
Strength to Weight: Bending, points 20 to 28
17
Thermal Diffusivity, mm2/s 36
8.1
Thermal Shock Resistance, points 23 to 39
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0.1 to 0.3
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
11.5 to 14.5
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0
Iron (Fe), % 0 to 0.25
82.5 to 88.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.2
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0