MakeItFrom.com
Menu (ESC)

C82800 Copper vs. AWS E309H

C82800 copper belongs to the copper alloys classification, while AWS E309H belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is AWS E309H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
34
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 46
78
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
620

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Melting Completion (Liquidus), °C 930
1410
Melting Onset (Solidus), °C 890
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.5

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 12
3.7
Embodied Energy, MJ/kg 190
52
Embodied Water, L/kg 310
180

Common Calculations

Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 21 to 36
22
Strength to Weight: Bending, points 20 to 28
21
Thermal Diffusivity, mm2/s 36
4.0
Thermal Shock Resistance, points 23 to 39
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0.040 to 0.15
Chromium (Cr), % 0 to 0.1
22 to 25
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0 to 0.75
Iron (Fe), % 0 to 0.25
55.8 to 65.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.2
12 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0