MakeItFrom.com
Menu (ESC)

C82800 Copper vs. EN 1.4537 Stainless Steel

C82800 copper belongs to the copper alloys classification, while EN 1.4537 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is EN 1.4537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 1.0 to 20
42
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 46
80
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
700
Tensile Strength: Yield (Proof), MPa 380 to 1000
330

Thermal Properties

Latent Heat of Fusion, J/g 240
310
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 930
1440
Melting Onset (Solidus), °C 890
1390
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.3

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 12
6.1
Embodied Energy, MJ/kg 190
84
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
270
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
24
Strength to Weight: Bending, points 20 to 28
22
Thermal Diffusivity, mm2/s 36
3.7
Thermal Shock Resistance, points 23 to 39
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
24 to 26
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
1.0 to 2.0
Iron (Fe), % 0 to 0.25
36.3 to 46.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.7 to 5.7
Nickel (Ni), % 0 to 0.2
24 to 27
Nitrogen (N), % 0
0.17 to 0.25
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.35
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0