MakeItFrom.com
Menu (ESC)

C82800 Copper vs. EN 1.6554 Steel

C82800 copper belongs to the copper alloys classification, while EN 1.6554 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.0 to 20
17 to 21
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 46
73
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
780 to 930
Tensile Strength: Yield (Proof), MPa 380 to 1000
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 310
420
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 890
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 19
8.7

Otherwise Unclassified Properties

Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 12
1.7
Embodied Energy, MJ/kg 190
22
Embodied Water, L/kg 310
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
810 to 1650
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
27 to 33
Strength to Weight: Bending, points 20 to 28
24 to 27
Thermal Diffusivity, mm2/s 36
11
Thermal Shock Resistance, points 23 to 39
23 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0 to 0.1
0.7 to 0.9
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0 to 0.3
Iron (Fe), % 0 to 0.25
94.6 to 97.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.2
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.35
0 to 0.6
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0

Comparable Variants