MakeItFrom.com
Menu (ESC)

C82800 Copper vs. CC482K Bronze

Both C82800 copper and CC482K bronze are copper alloys. They have 86% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is CC482K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
5.6
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
40
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
300
Tensile Strength: Yield (Proof), MPa 380 to 1000
160

Thermal Properties

Latent Heat of Fusion, J/g 240
190
Maximum Temperature: Mechanical, °C 310
160
Melting Completion (Liquidus), °C 930
980
Melting Onset (Solidus), °C 890
860
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 120
64
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
10
Electrical Conductivity: Equal Weight (Specific), % IACS 19
10

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 12
3.8
Embodied Energy, MJ/kg 190
62
Embodied Water, L/kg 310
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
14
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
120
Stiffness to Weight: Axial, points 7.8
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 21 to 36
9.5
Strength to Weight: Bending, points 20 to 28
11
Thermal Diffusivity, mm2/s 36
20
Thermal Shock Resistance, points 23 to 39
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Beryllium (Be), % 2.5 to 2.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
83.5 to 87
Iron (Fe), % 0 to 0.25
0 to 0.2
Lead (Pb), % 0 to 0.020
0.7 to 2.5
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.2
0 to 2.0
Phosphorus (P), % 0
0 to 0.4
Silicon (Si), % 0.2 to 0.35
0 to 0.010
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0 to 0.1
10.5 to 12.5
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0 to 2.0
Residuals, % 0 to 0.5
0