MakeItFrom.com
Menu (ESC)

C82800 Copper vs. CC490K Brass

Both C82800 copper and CC490K brass are copper alloys. They have 84% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.0 to 20
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 46
40
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
230
Tensile Strength: Yield (Proof), MPa 380 to 1000
110

Thermal Properties

Latent Heat of Fusion, J/g 240
190
Maximum Temperature: Mechanical, °C 310
160
Melting Completion (Liquidus), °C 930
980
Melting Onset (Solidus), °C 890
910
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 120
72
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
16
Electrical Conductivity: Equal Weight (Specific), % IACS 19
16

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.8
Embodied Carbon, kg CO2/kg material 12
2.9
Embodied Energy, MJ/kg 190
47
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
28
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
54
Stiffness to Weight: Axial, points 7.8
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 21 to 36
7.3
Strength to Weight: Bending, points 20 to 28
9.5
Thermal Diffusivity, mm2/s 36
22
Thermal Shock Resistance, points 23 to 39
8.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Beryllium (Be), % 2.5 to 2.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
81 to 86
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0 to 0.020
3.0 to 6.0
Nickel (Ni), % 0 to 0.2
0 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.2 to 0.35
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0 to 0.1
2.0 to 3.5
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
7.0 to 9.5
Residuals, % 0 to 0.5
0