MakeItFrom.com
Menu (ESC)

C82800 Copper vs. C85400 Brass

Both C82800 copper and C85400 brass are copper alloys. They have 68% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 1.0 to 20
23
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 46
40
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
220
Tensile Strength: Yield (Proof), MPa 380 to 1000
85

Thermal Properties

Latent Heat of Fusion, J/g 240
180
Maximum Temperature: Mechanical, °C 310
130
Melting Completion (Liquidus), °C 930
940
Melting Onset (Solidus), °C 890
940
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 120
89
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
20
Electrical Conductivity: Equal Weight (Specific), % IACS 19
22

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 12
2.8
Embodied Energy, MJ/kg 190
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
40
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
35
Stiffness to Weight: Axial, points 7.8
7.0
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 21 to 36
7.5
Strength to Weight: Bending, points 20 to 28
9.9
Thermal Diffusivity, mm2/s 36
28
Thermal Shock Resistance, points 23 to 39
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0 to 0.35
Beryllium (Be), % 2.5 to 2.9
0
Chromium (Cr), % 0 to 0.1
0
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
65 to 70
Iron (Fe), % 0 to 0.25
0 to 0.7
Lead (Pb), % 0 to 0.020
1.5 to 3.8
Nickel (Ni), % 0 to 0.2
0 to 1.0
Silicon (Si), % 0.2 to 0.35
0 to 0.050
Tin (Sn), % 0 to 0.1
0.5 to 1.5
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
24 to 32
Residuals, % 0 to 0.5
0 to 1.1