MakeItFrom.com
Menu (ESC)

C82800 Copper vs. N08700 Stainless Steel

C82800 copper belongs to the copper alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C82800 copper and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.0 to 20
32
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 45 to 85
81
Shear Modulus, GPa 46
79
Tensile Strength: Ultimate (UTS), MPa 670 to 1140
620
Tensile Strength: Yield (Proof), MPa 380 to 1000
270

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 930
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 19
1.9

Otherwise Unclassified Properties

Density, g/cm3 8.7
8.1
Embodied Carbon, kg CO2/kg material 12
6.0
Embodied Energy, MJ/kg 190
82
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
160
Resilience: Unit (Modulus of Resilience), kJ/m3 590 to 4080
180
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 21 to 36
21
Strength to Weight: Bending, points 20 to 28
20
Thermal Diffusivity, mm2/s 36
3.5
Thermal Shock Resistance, points 23 to 39
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.15
0
Beryllium (Be), % 2.5 to 2.9
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.1
19 to 23
Cobalt (Co), % 0.15 to 0.7
0
Copper (Cu), % 94.6 to 97.2
0 to 0.5
Iron (Fe), % 0 to 0.25
42 to 52.7
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0 to 0.2
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0 to 0.12
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.5
0