MakeItFrom.com
Menu (ESC)

C83300 Brass vs. ACI-ASTM CF8 Steel

C83300 brass belongs to the copper alloys classification, while ACI-ASTM CF8 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C83300 brass and the bottom bar is ACI-ASTM CF8 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35
140
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 35
55
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 220
540
Tensile Strength: Yield (Proof), MPa 69
260

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 33
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
16
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 44
44
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
240
Resilience: Unit (Modulus of Resilience), kJ/m3 21
160
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.9
19
Strength to Weight: Bending, points 9.2
19
Thermal Diffusivity, mm2/s 48
4.3
Thermal Shock Resistance, points 7.9
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 92 to 94
0
Iron (Fe), % 0
63.8 to 74
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 1.0 to 2.0
0
Zinc (Zn), % 2.0 to 6.0
0
Residuals, % 0 to 0.7
0