MakeItFrom.com
Menu (ESC)

C83300 Brass vs. EN 1.5522 Steel

C83300 brass belongs to the copper alloys classification, while EN 1.5522 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C83300 brass and the bottom bar is EN 1.5522 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35
140 to 190
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 35
11 to 21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 220
450 to 1490
Tensile Strength: Yield (Proof), MPa 69
300 to 520

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
51
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 33
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.9
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 44
19
Embodied Water, L/kg 320
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 21
250 to 720
Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.9
16 to 53
Strength to Weight: Bending, points 9.2
17 to 37
Thermal Diffusivity, mm2/s 48
14
Thermal Shock Resistance, points 7.9
13 to 44

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.24
Copper (Cu), % 92 to 94
0 to 0.25
Iron (Fe), % 0
98 to 98.9
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 1.0 to 2.0
0
Zinc (Zn), % 2.0 to 6.0
0
Residuals, % 0 to 0.7
0