MakeItFrom.com
Menu (ESC)

C83300 Brass vs. S42035 Stainless Steel

C83300 brass belongs to the copper alloys classification, while S42035 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C83300 brass and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 35
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 35
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 220
630
Tensile Strength: Yield (Proof), MPa 69
430

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
810
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 33
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.4
Embodied Energy, MJ/kg 44
34
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60
100
Resilience: Unit (Modulus of Resilience), kJ/m3 21
460
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.9
22
Strength to Weight: Bending, points 9.2
21
Thermal Diffusivity, mm2/s 48
7.2
Thermal Shock Resistance, points 7.9
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13.5 to 15.5
Copper (Cu), % 92 to 94
0
Iron (Fe), % 0
78.1 to 85
Lead (Pb), % 1.0 to 2.0
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0
1.0 to 2.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.0 to 2.0
0
Titanium (Ti), % 0
0.3 to 0.5
Zinc (Zn), % 2.0 to 6.0
0
Residuals, % 0 to 0.7
0