MakeItFrom.com
Menu (ESC)

C83600 Ounce Metal vs. AISI 310Cb Stainless Steel

C83600 ounce metal belongs to the copper alloys classification, while AISI 310Cb stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C83600 ounce metal and the bottom bar is AISI 310Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
78
Tensile Strength: Ultimate (UTS), MPa 250
580
Tensile Strength: Yield (Proof), MPa 120
230

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 1010
1410
Melting Onset (Solidus), °C 850
1360
Specific Heat Capacity, J/kg-K 370
480
Thermal Conductivity, W/m-K 72
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 15
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
28
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.1
4.8
Embodied Energy, MJ/kg 50
69
Embodied Water, L/kg 350
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43
180
Resilience: Unit (Modulus of Resilience), kJ/m3 70
140
Stiffness to Weight: Axial, points 6.7
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.9
20
Strength to Weight: Bending, points 10
20
Thermal Diffusivity, mm2/s 22
3.9
Thermal Shock Resistance, points 9.3
13

Alloy Composition

Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 84 to 86
0
Iron (Fe), % 0 to 0.3
47.2 to 57
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 1.0
19 to 22
Niobium (Nb), % 0
0 to 1.1
Phosphorus (P), % 0 to 1.5
0 to 0.045
Silicon (Si), % 0 to 0.0050
0 to 1.5
Sulfur (S), % 0 to 0.080
0 to 0.030
Tin (Sn), % 4.0 to 6.0
0
Zinc (Zn), % 4.0 to 6.0
0
Residuals, % 0 to 0.7
0