MakeItFrom.com
Menu (ESC)

C83600 Ounce Metal vs. S45500 Stainless Steel

C83600 ounce metal belongs to the copper alloys classification, while S45500 stainless steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C83600 ounce metal and the bottom bar is S45500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21
3.4 to 11
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 39
75
Tensile Strength: Ultimate (UTS), MPa 250
1370 to 1850
Tensile Strength: Yield (Proof), MPa 120
1240 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 160
760
Melting Completion (Liquidus), °C 1010
1440
Melting Onset (Solidus), °C 850
1400
Specific Heat Capacity, J/kg-K 370
470
Thermal Expansion, µm/m-K 18
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
17
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 3.1
3.8
Embodied Energy, MJ/kg 50
57
Embodied Water, L/kg 350
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43
45 to 190
Stiffness to Weight: Axial, points 6.7
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.9
48 to 65
Strength to Weight: Bending, points 10
35 to 42
Thermal Shock Resistance, points 9.3
48 to 64

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.25
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 84 to 86
1.5 to 2.5
Iron (Fe), % 0 to 0.3
71.5 to 79.2
Lead (Pb), % 4.0 to 6.0
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
7.5 to 9.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 1.5
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 0.5
Sulfur (S), % 0 to 0.080
0 to 0.030
Tantalum (Ta), % 0
0 to 0.5
Tin (Sn), % 4.0 to 6.0
0
Titanium (Ti), % 0
0.8 to 1.4
Zinc (Zn), % 4.0 to 6.0
0
Residuals, % 0 to 0.7
0