MakeItFrom.com
Menu (ESC)

C84000 Brass vs. ACI-ASTM CN7M Steel

C84000 brass belongs to the copper alloys classification, while ACI-ASTM CN7M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C84000 brass and the bottom bar is ACI-ASTM CN7M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
140
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 27
44
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 250
480
Tensile Strength: Yield (Proof), MPa 140
200

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1040
1410
Melting Onset (Solidus), °C 940
1450
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 72
21
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 17
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
32
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 3.0
5.6
Embodied Energy, MJ/kg 49
78
Embodied Water, L/kg 330
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
170
Resilience: Unit (Modulus of Resilience), kJ/m3 83
110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 8.2
17
Strength to Weight: Bending, points 10
17
Thermal Diffusivity, mm2/s 22
5.6
Thermal Shock Resistance, points 9.0
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 82 to 89
3.0 to 4.0
Iron (Fe), % 0 to 0.4
37.4 to 48.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.5 to 2.0
27.5 to 30.5
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0 to 0.0050
0 to 1.5
Sulfur (S), % 0.1 to 0.65
0 to 0.040
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 5.0 to 14
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0