MakeItFrom.com
Menu (ESC)

C84000 Brass vs. ASTM A372 Grade J Steel

C84000 brass belongs to the copper alloys classification, while ASTM A372 grade J steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C84000 brass and the bottom bar is ASTM A372 grade J steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65
200 to 310
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 27
17 to 22
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 250
650 to 1020
Tensile Strength: Yield (Proof), MPa 140
430 to 850

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 940
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 72
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 17
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.4
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.5
Embodied Energy, MJ/kg 49
20
Embodied Water, L/kg 330
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 83
500 to 1930
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 8.2
23 to 36
Strength to Weight: Bending, points 10
21 to 29
Thermal Diffusivity, mm2/s 22
12
Thermal Shock Resistance, points 9.0
19 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Carbon (C), % 0
0.35 to 0.5
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 82 to 89
0
Iron (Fe), % 0 to 0.4
96.7 to 97.8
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0.75 to 1.1
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 0.5 to 2.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.015
Silicon (Si), % 0 to 0.0050
0.15 to 0.35
Sulfur (S), % 0.1 to 0.65
0 to 0.010
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 5.0 to 14
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0