MakeItFrom.com
Menu (ESC)

C84000 Brass vs. Grade CY40 Nickel

C84000 brass belongs to the copper alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C84000 brass and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 27
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Tensile Strength: Ultimate (UTS), MPa 250
540
Tensile Strength: Yield (Proof), MPa 140
220

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 1040
1350
Melting Onset (Solidus), °C 940
1300
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 72
14
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 17
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
55
Density, g/cm3 8.6
8.4
Embodied Carbon, kg CO2/kg material 3.0
9.1
Embodied Energy, MJ/kg 49
130
Embodied Water, L/kg 330
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
150
Resilience: Unit (Modulus of Resilience), kJ/m3 83
130
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 8.2
18
Strength to Weight: Bending, points 10
18
Thermal Diffusivity, mm2/s 22
3.7
Thermal Shock Resistance, points 9.0
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0
14 to 17
Copper (Cu), % 82 to 89
0
Iron (Fe), % 0 to 0.4
0 to 11
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.010
0 to 1.5
Nickel (Ni), % 0.5 to 2.0
67 to 86
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 0.0050
0 to 3.0
Sulfur (S), % 0.1 to 0.65
0 to 0.030
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 5.0 to 14
0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0