MakeItFrom.com
Menu (ESC)

C84000 Brass vs. C19800 Copper

Both C84000 brass and C19800 copper are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C84000 brass and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 27
9.0 to 12
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 250
430 to 550
Tensile Strength: Yield (Proof), MPa 140
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 1040
1070
Melting Onset (Solidus), °C 940
1050
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 72
260
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
61
Electrical Conductivity: Equal Weight (Specific), % IACS 17
62

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 49
43
Embodied Water, L/kg 330
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 83
770 to 1320
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 8.2
14 to 17
Strength to Weight: Bending, points 10
14 to 17
Thermal Diffusivity, mm2/s 22
75
Thermal Shock Resistance, points 9.0
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Copper (Cu), % 82 to 89
95.7 to 99.47
Iron (Fe), % 0 to 0.4
0.020 to 0.5
Lead (Pb), % 0 to 0.090
0
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0 to 0.010
0
Nickel (Ni), % 0.5 to 2.0
0
Phosphorus (P), % 0 to 0.050
0.010 to 0.1
Silicon (Si), % 0 to 0.0050
0
Sulfur (S), % 0.1 to 0.65
0
Tin (Sn), % 2.0 to 4.0
0.1 to 1.0
Zinc (Zn), % 5.0 to 14
0.3 to 1.5
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0 to 0.2