MakeItFrom.com
Menu (ESC)

C84000 Brass vs. C99500 Copper

Both C84000 brass and C99500 copper are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 88% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C84000 brass and the bottom bar is C99500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 27
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
45
Tensile Strength: Ultimate (UTS), MPa 250
540
Tensile Strength: Yield (Proof), MPa 140
310

Thermal Properties

Latent Heat of Fusion, J/g 190
240
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 1040
1090
Melting Onset (Solidus), °C 940
1040
Specific Heat Capacity, J/kg-K 380
400
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
10
Electrical Conductivity: Equal Weight (Specific), % IACS 17
10

Otherwise Unclassified Properties

Base Metal Price, % relative 30
30
Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 3.0
3.0
Embodied Energy, MJ/kg 49
47
Embodied Water, L/kg 330
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 58
63
Resilience: Unit (Modulus of Resilience), kJ/m3 83
410
Stiffness to Weight: Axial, points 7.2
7.7
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 8.2
17
Strength to Weight: Bending, points 10
17
Thermal Shock Resistance, points 9.0
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.0050
0.5 to 2.0
Antimony (Sb), % 0 to 0.020
0
Boron (B), % 0 to 0.1
0
Copper (Cu), % 82 to 89
82.5 to 92
Iron (Fe), % 0 to 0.4
3.0 to 5.0
Lead (Pb), % 0 to 0.090
0 to 0.25
Manganese (Mn), % 0 to 0.010
0 to 0.5
Nickel (Ni), % 0.5 to 2.0
3.5 to 5.5
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 0.0050
0.5 to 2.0
Sulfur (S), % 0.1 to 0.65
0
Tin (Sn), % 2.0 to 4.0
0
Zinc (Zn), % 5.0 to 14
0.5 to 2.0
Zirconium (Zr), % 0 to 0.1
0
Residuals, % 0 to 0.7
0 to 0.3